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Abstract

We consider the response of a gas bubble in an inviscid, incompressible ¯uid, to a rapid, impulsive
change of the ambient pressure, from some initial value down to a minimum and then back up to the
initial value. The most important result is the sharp decrease in the amplitude of volume oscillations
which results from ®nite amplitude coupling between the purely radial and shape modes. When the
bubble has a steady shape that is non-spherical, there can be resonance between radial mode oscillations
and one of the shape modes. This contributes to growth of the resonant shape mode from an initial
spherical shape, and produces a `phase-lock' with the two modes either in-phase or p radians out-of-
phase. For in-phase conditions, this leads ultimately to a geometric ampli®cation of higher-order shape
modes and a sharp decrease in the amplitude of the volume oscillations. The same geometric
ampli®cation mechanism also appears in the absence of mean shape deformation (and thus 1:1
resonance), but only if there is another mechanism for the appearance of shape modes. There is also no
phase-locking when there is no mean deformation, and so the importance of the geometric ampli®cation
e�ect is greatest whenever the phase di�erence between P0 and P2 is small. # 1999 Published by
Elsevier Science Ltd. All rights reserved.

1. Introduction

As part of a continuing e�ort to understand the e�ect of interactions between oscillations of
volume and shape on the observable dynamics of an oscillating bubble, we have conducted a
numerical investigation of ®nite amplitude bubble oscillations in an inviscid liquid due to an
impulsive decrease in pressure. This work builds upon our previous study of non-spherical
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bubble dynamics involving the free oscillations of a bubble in an inviscid, quiescent ¯uid, Part
I. In moving to an impulsive decrease in pressure, we take one step toward modeling physically
realizable systems.
The recent experimental results of Ceccio and Brennen (1991) clearly show that cavitation

bubbles on blunt headforms are non-spherical and emit an acoustic impulse that is signi®cantly
smaller than that predicted by Rayleigh±Plesset theory. As cavitation bubbles move along
streamlines near the blunt headform, they pass through a region of low pressure causing them
to ®rst grow and then to collapse or oscillate producing sound. It has been suggested that the
non-spherical shape of the bubble `defocuses' the bubble collapse making the bubble a less
e�cient source of sound.
Previous work on resonant interactions between volume and shape oscillations has shown

that energy can be transferred away from volume oscillations and into shape oscillations when
the natural frequency for volume oscillations is close to an integer multiple of the natural
frequency for shape oscillations. Yang et al. (1993) and Feng and Leal (1993) have shown that
the 1:1 resonant interaction is signi®cant when there is a mean deformation due to an external
¯ow or anisotropic pressure ®eld. Having these things in mind we undertook a numerical
investigation to determine whether the 1:1 resonance interaction for ®nite amplitude
oscillations could be responsible for the observed di�erence between the predictions of
Rayleigh±Plesset theory and the experimental results of Ceccio and Brennen (1991).
In the course of our investigation we discovered a non-resonant ®nite amplitude interaction

between volume and shape oscillations. As the non-spherical bubbles collapse, energy is
transferred into all of the shape modes present in the bubble shape, which are thus ampli®ed.
This mechanism is similar to the e�ect suggested many years ago by Birkho� (1954, 1956) in
which collapsing bubbles are predicted to be unstable even though the heavier ¯uid is being
accelerated toward the lighter ¯uid, a situation which Taylor (1950) found to be stable.
In the present work, we present numerical simulations of bubbles with a mean deformation

of shape that experience an impulsive decrease in pressure in an attempt to study the physics
underlying the observations of Ceccio and Brennen (1991). We ®nd that, in addition to the 1:1
resonant interaction between oscillations of volume and shape, the non-resonant interaction
between volume and shape mentioned above reduces the e�ciency of the bubble as a
monopole source of sound. We demonstrate that the non-resonant interaction does not require
the presence of a mean deformation, but that the presence of higher modes in the interface is
important.

2. The numerical procedures

The numerical results reported in this paper were obtained using the boundary-integral
technique that is described in Part I. For this study of problems with an impulsive pressure
decrease, we have found it necessary to periodically redistribute the nodes along the interface
as the bubble expands and collapses (Boulton-Stone, 1993; Oguz and Prosperetti, 1990). This is
accomplished by placing new nodes along the interface at equal intervals of the length and
assigning to them the linearly interpolated value from the original nodes. The ability of the
method, including the redistribution of nodes along the interface, to reproduce the predictions
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of Rayleigh±Plesset theory as well as its convergence for increasing number of nodes and
decreasing time-step size can be found in McDougald (1997).
In order to see the interaction between modes, we use the Legendre polynomial

decomposition described in Part I to extract the amplitudes of the radial and shape modes
from the bubble shapes calculated using the boundary integral method. We present the results
of our simulations as the amplitudes of the radial, P0, mode and shape, Pn, modes as a
function of time non-dimensionalized using the natural frequency of the radial mode o0/2p. In
addition, we compare the volume response and acoustic pressure response with the predictions
of Rayleigh±Plesset theory for several cases.
The steady-state shape for the bubble in the following results is made non-spherical by a

non-uniform pressure distribution imposed on the interface, A(Z,t )=A0(t )+An(t )Pn(Z ) as
outlined in Part I, Section 2. The amplitudes of the radial and shape modes at steady-state
along with values of the pressure coe�cients are given in Table 1. This case corresponds to
case G from Section 4.2 of Part I. As noted there, the mean bubble shape is oblate, with a half
length along the symmetry axis of 0.86 and perpendicular to the symmetry axis of 1.07. By
including this modest mean deformation we hope to at least qualitatively capture the physics
associated with the larger mean deformations of shape observed in experimental systems. We
will see later, however, that the ®nite amplitude e�ect that is primarily responsible for

Table 1

The equilibrium values of Ea1,0, Ea1,2 and the corresponding values of A0 and A2

Ea SS
1,0 Ea SS

1,2 A0 A2

0.00 ÿ0.14 O(10ÿ3) 0.61

Fig. 1. The isotropic pressure history (PS/P1) versus o0t/2p ) for DP=0.92.
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decreasing the acoustic response of a bubble does not depend upon the presence of a mean
deformation.
The bubble oscillations are initiated by an impulsive decrease in the isotropic pressure at the

bubble surface such that

PS

P1
� 1ÿ DP

�1ÿ cos 2o0t�
2

0RtRp=o0

PS

P1
� 1 t > p=o0 �1�

where PS is the pressure at the bubble surface and DP is the magnitude of the pressure impulse.
The pulse width depends upon the natural frequency of the radial mode so that results for
various amounts of detuning can be compared. The pulse width is constant with respect to o0t/
2p and is equal to one half of the period of the radial mode oscillations. A representative
isotropic pressure history is presented in Fig. 1. The impulse height is adjusted so that radial
mode amplitude always grows to the same value during the initial expansion of the bubble.
Rather than use trial and error with the boundary integral code to ®nd the appropriate impulse
height, we use the Rayleigh±Plesset theory for this purpose.

3. Results

First, we present a series of results in the neighborhood of the 1:1 resonance condition where
we anticipate coupling between radial and shape oscillations based upon the small deformation
theory and the numerical investigation of Part I. In this sequence of results, the equilibrium
conditions are varied to give di�erent degrees of mismatch between the natural frequencies for
radial and shape mode oscillations, including the frequency shift associated with the mean
shape deformation due to A2$0. In particular, the detuning parameter, Eb�, for this case is
given by

Eb� � Eb�0 �
�
3gÿ 1

2on
� 3gÿ 1

o3
n

�
A0 ÿ �n� 1��2n� 1�kn

�3n� 1�on

�
2�n� 1�

o2
n

� 10ÿ n

4

�
An

kn �
��nÿ 1�!!
�n=2�!

�3 �3n=2�!
�3nÿ 1�!! n even

kn � 0 n odd �2�
as shown in Part I. Here Eb�0 is the di�erence o0 ÿ on for a spherical bubble, and Eb� is the
same quantity corrected to account for the shifts in natural frequency due to nonzero
deformation, i.e. A0,An $ 0, as predicted by small deformation theory. As the detuning
parameter is decreased, from positive values, the natural frequency for radial mode oscillations
is decreased relative to the natural frequency for P2 shape mode oscillations. If we recall the
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de®nitions of o0 and on from Part I, we see that decreasing the di�erence between o0 and on

corresponds to decreasing the surface tension or increasing the equilibrium radius by lowering
the ambient pressure. At some point the natural frequencies will become equal, the conditions
for 1:1 resonance will be satis®ed, and the coupling between radial and P2 mode oscillations
will be maximal. The small deformation theory predicts that the greatest interaction between
the radial mode and the P2 shape mode will occur when the e�ective detuning parameter
Eb�=0. However, the numerical work on case G in Part I shows that the maximum interaction
actually occurs at Eb� 1 ÿ 0.21 due to di�erences between the ®nite amplitude, numerically

Fig. 2. Amplitudes of the P0 and P2 modes (top) and the P0, P4 and P6 modes (bottom) for Eb�=0.29.
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determined shift in the natural frequency of the P2 mode (caused by the mean shape
deformation) and the predicted, small deformation value (see Section 4.2, Part I). In both the
small deformation theory and the earlier numerical study, the coupling between modes
decreases as the equilibrium conditions are changed and the mismatch between the natural
frequencies of the radial mode and shape mode increases. Signi®cant departures from the
Rayleigh±Plesset theory appear for conditions where the detuning parameter Eb� falls within a
range of values centered on the value exhibiting the greatest interaction between modes. In the
present study, we observe that the ®nite amplitude interaction between radial and shape
oscillations is not symmetric with regard to the detuning parameter Eb� corresponding to the
maximum interaction as predicted by either the small deformation theory or the free oscillation
®nite amplitude numerical results of Part I.
The impulse height DP for the series of results shown in Figs. 2±14 is adjusted so that the

radial mode grows to Ea1,0=0.30 during the initial expansion of the bubble. In Fig. 2, where
the detuning parameter Eb�=0.29 there is very little interaction between the radial mode and
shape modes. In fact, the e�ect of the coupling between modes on the amplitude of the radial
mode is almost imperceptible and the volume response is equivalent to that predicted by
Rayleigh±Plesset theory, as shown in Fig. 3. However, small amplitude oscillations of both the
P2 and P4 shape modes appear in the bubble's response to an impulsive pressure decrease.
As the equilibrium conditions are changed so that the detuning parameter Eb� decreases to

Eb�=0.09, the interaction between modes increases and the amplitudes of the shape mode
oscillations reach higher values. In Fig. 4, a correlation between the collapse of the bubble and
the maximum amplitude of the P4 mode oscillations appears brie¯y around o0t/2p=5. This is
the ®rst appearance of non-resonant large amplitude interactions between oscillations of the
radial mode and the shape modes.

Fig. 3. Comparison between the volume response predicted from the Rayleigh±Plesset theory and numerical
simulation of a non-spherical bubble for Eb�=0.29.
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As conditions are changed to bring the natural frequencies for radial and P2 shape mode
oscillations closer together, the interaction between the modes continues to become stronger.
The result for Eb�= ÿ 0.21, shown in Fig. 5, corresponds to the Eb� value that led to the
greatest interaction between the radial and P2 mode in the study of free oscillations in Part I.
Initially, the P2 shape mode grows via 1:1 resonant coupling with the radial mode and the
higher modes then become excited via non-resonant modal coupling with the P2 mode as
observed in Part I. However, in this case, the large amplitude radial oscillations also interact
directly with the higher-order shape modes once they become excited. The collapse of bubble
volume which occurs at the minimum of the P0 mode is accompanied by a direct ampli®cation
of the P4 and P6 modes. It will be noted that the interaction between modes is still time

Fig. 4. Amplitudes of the P0 and P2 modes (top) and the P0, P4 and P6 modes (bottom) for Eb�=0.09.
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modulated and the shape mode amplitudes eventually decrease again as the phase di�erence
between the radial and P2 mode grows.
The ®nite amplitude interaction between the radial mode and all of the active shape modes

becomes still stronger as conditions are changed to further decrease Eb� to ÿ0.51, Fig. 6. By
comparing this result with Fig. 4, the lack of symmetry with regard to Eb� in the interaction
between modes is readily apparent. This observation suggests that the ®nite amplitude e�ect
that couples radial oscillations to ampli®cation of the higher order shape modes does not
depend directly upon the proximity to the exact resonant condition, although the 1:1 resonant
interaction is presumably responsible for the initial growth of the P2 mode. The ampli®cation
of the shape mode amplitudes during the collapse of the bubble is very clearly seen in Fig. 6.
The corresponding decrease in the volume response and the acoustic pressure compared to

Fig. 5. Amplitudes of the P0 and P2 modes (top) and the P0, P4 and P6 modes (bottom) for Eb�=ÿ0.21.
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predictions of Rayleigh±Plesset theory is illustrated in Fig. 7. The acoustic pressure, in
dimensionless variables, is approximately given by

PA�r,t� � 1

4pr
d2V

dt2
�3�

where r is the distance from the center of the bubble (Ceccio and Brennen 1991). Scaling the
acoustic pressure by (2p/o0)

2 in Fig. 7 accounts for using the re-scaled time o0t/2p in the
®gures and facilitates comparison between results at di�erent equilibrium conditions. The
transfer of energy from the radial mode to the shapes modes during the collapse of bubble
`defocuses' the volume collapse, making the bubble less e�cient as a monopole source of
sound.

Fig. 6. Amplitudes of the P0 and P2 modes (top) and the P0, P4 and P6 modes (bottom) for Eb�=ÿ0.51.
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To further examine the interaction between large amplitude radial oscillations and oscillation
of the shape modes we consider the case with Eb�= ÿ 0.71 in Fig. 8. We choose to illustrate
this case because it shows the greatest deviation from the predictions of the Rayleigh±Plesset
theory, as shown in Fig. 9. The ®nite amplitude interaction between oscillations of the radial
mode and the shape modes is a consequence of the fact that the interface is a closed surface.
As the bubble expands, the area of the surface increases and the amplitudes of waves on the
surface are decreased and their wavelength is increased. During the collapse of the bubble the
amplitudes of waves on the surface increase as the area of the interface shrinks. This geometric
ampli®cation of disturbances on the bubble surface is responsible for the fact that collapsing

Fig. 7. Comparisons between the volume response (top) and the acoustic pressure (bottom) predicted by Rayleigh±

Plesset theory and the numerical simulation of a non-spherical bubble for Eb�=ÿ 0.51.
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bubbles are observed to be unstable (and often break up into a bubble cloud), even though the
dense external ¯uid is accelerated toward the light internal ¯uid during the collapse phase, a
situation which Rayleigh±Taylor (1950) analysis would predict to be stable. It was
demonstrated by both Birkho� (1954, 1956) and Plesset and Mitchell (1956) that in the limit of
the radial mode amplitude decreasing to zero, the shape mode amplitudes should grow in
proportion to the radial mode amplitude raised to ÿ0.25 power. In terms of the variables this
result can be expressed as

Ea1,nA�Ea1,0�ÿ0:25 �4�

Fig. 8. Amplitudes of the P0 and P2 modes (top) and the P0, P4 and P6 modes (bottom) for Eb�=ÿ0.71.
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In Fig. 10 we construct a log±log plot of the amplitudes for several shape modes against the
amplitude of the radial mode during the sixth collapse of the bubble in Fig. 8 and compare our
results with the relation (4). While we are clearly not in the limit of Ea1,0 4 0, the P2 mode
amplitude does approximately exhibit the power law behavior expected from Eq. (4). The
collapse does not proceed to small enough radial mode amplitude to make any judgment about
the asymptotic behavior of the higher modes. Still, this result is evidence that the ®nite
amplitude e�ect seen numerically is a consequence of a geometric ampli®cation of the shape
mode amplitudes. The evolution of the bubble shape during the collapse is shown in Fig. 11.
The ®rst shape, the large prolate ellipse, is from o0t/2p=5.72 and the ®nal shape, the small
oblate shape, is from o0t/2p=6.16.

Fig. 9. Comparisons between the volume response (top) and the acoustic pressure (bottom) predicted by Rayleigh±

Plesset theory and the numerical simulation of a non-spherical bubble for Eb�=ÿ 0.71.
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All of the results presented thus far are similar in that the radial mode oscillations and the
P2 mode oscillations are in phase when the geometric ampli®cation of the higher-order shape
mode amplitudes occurs. The previous analytic and numerical work suggests that when the
natural frequency for radial oscillations is less than the natural frequency for P2 mode
oscillations, the radial and P2 mode oscillations will be p radians out of phase as they interact.
In the results presented so far, the frequencies of the radial and/or shape modes are shifted due
to ®nite amplitude oscillation e�ects so that their oscillations remain in phase. This phase-
locking is responsible for the loss of symmetry with regard to Eb� in the interaction between
the modes. On the one hand, this is understandable as both the P0 and P2 modes are

Fig. 10. Log±log plot of the amplitudes of several shape modes versus the amplitude of the radial mode during the
sixth collapse in Fig. 8.

Fig. 11. The evolution of bubble shapes during the sixth collapse in Fig. 8. The full bubble shape is obtained by
revolution around the horizontal axis.
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signi®cant in determining the volume of the bubble and their amplitudes appear in the
expression for the volume with the same sign. Therefore, the in-phase growth in the P2 mode
as the bubble collapses further decreases the bubble volume. However, at some point the
natural frequency for radial oscillations will be su�ciently below the natural frequency for P2

oscillations, that little or no interaction between the modes will occur. The shape modes will
not be excited on the bubble surface and no ®nite amplitude coupling will take place. For
conditions which lie between these cases we expect to ®nd results where the P0 and P2 modes
will be p radians out of phase, based upon the 1:1 resonance results from Part I.
In Fig. 12, under conditions where Eb�= ÿ 0.91, we present such a result. As the bubble

collapses the geometric ampli®cation e�ect causes the P2 mode amplitude to grow rapidly, but

Fig. 12. Amplitudes of the P0 and P2 modes (top) and the P0, P4 and P6 modes (bottom) for Eb�=ÿ 0.91.

N.K. McDougald, L.G. Leal / International Journal of Multiphase Flow 25 (1999) 921±941934



the phase di�erence of p radians means that the P2 amplitude has the opposite sign of the P0

mode amplitude and will add to the volume of the bubble. As a result, the volume response of
the bubble will be inhibited and the geometric ampli®cation of the higher-order shape mode
amplitudes becomes less apparent. We have added the e�ective radius, Reff �

��������������
3V=4p3
p

, to Fig.
12 as a measure of the volume response. The result is compared to the volume response
predicted by Rayleigh±Plesset theory in Fig. 13. The range of conditions characterized by this
second type of a response is very small. In fact, as we move to the ®nal result in this series
with Eb�= ÿ 1.01 the interaction between modes abruptly disappears as the 1:1 resonant
interaction no longer leads to shape oscillations of signi®cant amplitude, Fig. 14.

Fig. 13. Comparisons between the volume response (top) and the acoustic pressure (bottom) predicted by Rayleigh±
Plesset theory and the numerical simulation of a non-spherical bubble for Eb�=ÿ 0.91.
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The preceding sequence of results demonstrate ®nite amplitude e�ects which reduce the
e�ciency of a bubble as a source of sound. The most common result is that the radial and P2

mode oscillations become locked in-phase and energy is transferred to all of the shape modes
during the collapse of the bubble, which defocuses the collapse and reduces both the volume
response and the acoustic response of the bubble. For a small set of equilibrium conditions,
however, the interaction between the radial mode and the P2 mode dominates the volumetric
response of bubble. For those cases, which occur for a narrow range of conditions in which o0

< o2, the P0 and P2 modes become locked at p radians out of phase, the geometric
ampli®cation of the P2 mode amplitude then increases the bubble volume, and directly inhibits
the collapse of the bubble volume.

Fig. 14. Amplitudes of the P0 and P2 modes (top) and the P0, P4 and P6 modes (bottom) for Eb�=ÿ 1.01.
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The signi®cance of the proximity to the exact 1:1 resonance condition lies in the observation
that ®nite amplitude e�ects do not cause the interface to be unstable, at least for the amplitude
of disturbance considered in this study. The response of an initially spherical bubble to the
same impulsive decrease in pressure will be spherical oscillations, which are therefore identical
to what would be predicted by Rayleigh±Plesset theory. Therefore, the ®nite amplitude
ampli®cation of the shape mode amplitudes is only seen when shape modes become active in
the bubble response via 1:1 resonance, for P2 mode oscillations, or by modal coupling for the
higher modes. However, the mean deformation and 1:1 resonance are not necessary for the
®nite amplitude e�ects to be observed if there is some other source for P2. For example, if an

Fig. 15. Amplitudes of the P0, P2 and P4 modes (top) and the comparison of the volume response with the
Rayleigh±Plesset theory (bottom) for A2=0, Eb�=ÿ0.91.
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initial perturbation of the P2 mode is put in at t=0 for a bubble with a spherical mean shape
(i.e. A2=0), the ®nite amplitude interaction between the modes is still observed following an
impulsive decrease in pressure at t=0. Fig. 15 shows the response of a bubble under these
conditions. One interesting point here is that 1:1 resonance does not occur without the
presence of a mean deformation. Thus, in the result of Fig. 15, the phase di�erence between
the radial mode and P2 shape mode does not get locked at p radians Instead, the ®nite
amplitude interaction between modes is delayed until the P0 and P2 modes are in phase with
each other. In fact, without the mean deformation, and the accompanying 1:1 resonant
interaction, the P0 and P2 modes do not get locked in-phase as they did for cases with ÿ0.71<
Eb�<0.29. Geometric ampli®cation of the shape modes still occurs as the bubble collapses, but
its e�ect on the volume response of the bubble is greatest when the P0 mode and P2 mode
have a phase di�erence of either 0 or p radians.
The ®nite amplitude e�ect can also be important in bubble breakup. The ampli®cation of the

Fig. 16. Amplitudes of the P0, P2 and P4 modes (top) and the evolution of the bubble shapes during the ®nal
collapse (bottom) for Eb=ÿ 0.21.
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shape mode amplitudes as the bubble collapses is precisely what is required to drive the bubble
to breakup in the absence of strong spatial gradients in pressure or stress. If we consider an
example with a slightly stronger impulsive pressure decrease that gives an initial radial
expansion of ea1,0=0.35, we ®nd that bubble breakup occurs for all cases with ÿ0.41< Eb�<
ÿ0.21. A representative case is shown in Fig. 16. The bubble breaks via the formation of a
toroidal bubble in which opposing surfaces of the bubble approach each other along the axis
of rotational symmetry. The subsequent evolution, and presumably breakup, of the toroidal
bubble is beyond the scope of our investigation. However, if the toroidal bubble were to break
up via a capillary wave instability to form several smaller bubbles, this mechanism for bubble
breakup may be an important step in bubble cloud formation.

4. Summary of results

. Non-resonant ®nite amplitude interactions between radial and shape mode oscillations result
in rapid increase in the amplitude of shape oscillations during bubble collapse, cf. Figs. 2, 4±
6, 8 and 12.

. Finite amplitude interactions between radial and shape mode oscillations reduce the
e�ciency of a bubble as a monopole source of sound by transferring energy into higher
order shape modes and `defocusing' the bubble collapse, Figs. 7, 9 and 13.

. The ®nite amplitude interaction is a consequence of a geometric ampli®cation of shape mode
amplitude, Fig. 10 and accompanying discussion.

. The geometric ampli®cation of shape modes is independent of the presence of a mean
deformation and the proximity to resonance conditions, Fig. 15.

. 1:1 resonant coupling between radial and shape oscillations provides a mechanism to excite
shape modes in the bubble response that subsequently grow in amplitude via geometric
ampli®cation, cf. Figs. 2, 4±6, 8 and 12. The resonant coupling also a�ects the phase
relationship between radial and shape mode oscillations cf. Figs. 8 and 12.

. Geometric ampli®cation of shape modes can also be important in bubble breakup,
Fig. 16.

5. Discussion

We have shown in the present paper (Part II) that the e�ciency of a bubble as a monopole
source of sound can be dramatically decreased when ®nite amplitude interactions between the
radial mode oscillations and the oscillations of Pn shape modes leads to strong growth in the
amplitudes of higher-order modes (larger n ). The geometric ampli®cation of the amplitude of
shape modes, which plays an essential role in this phenomenon, is not dependent on the
presence of a mean deformation, nor directly on proximity to resonance conditions. However,
it does require the presence of shape modes of ®nite amplitude, and the 1:1 resonant
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interaction between P0 and Pn oscillations (P2 in the present case) can play an important role
in exciting shape mode oscillations, especially if the initial perturbation is strictly radial. We
have also seen that proximity to resonance conditions does play a role in determining the
relative phase between the oscillations of the radial mode and the P2 mode (for our case, it is
the P2 mode that is directly a�ected by resonant coupling), and this plays an important
secondary role in determining whether the amplitude of volume oscillations is su�cient to drive
the coupling to higher order modes.
One apparent di�erence between the present results and the experimental observation of an

acoustic signal in the traveling bubble hydroacoustics problem is that we do not typically
predict large e�ects on the bubble volume until after several periods of oscillation have already
gone by. In the computations, however, the initial perturbation of shape is a relatively small P2

contribution, and it takes several periods before this can lead, via mode coupling e�ects, to
higher-order modes of su�cient amplitude to produce a major in¯uence on the magnitude of
volume oscillations. In the real problem, the initial shape is much more complex, presumably
containing the higher-order shape modes at ®nite amplitude immediately.
We have seen, in the two parts of the present investigation, that the dynamics of non-

spherical bubbles is generally quite di�erent than predictions based on the Rayleigh±Plesset
theory for spherical bubbles. Speci®cally, when the equilibrium or steady-state conditions are
such that we are in the neighborhood of resonant interactions between the purely radial
oscillation and one of the Pn shape modes, there is strong coupling between the shape and
volume oscillations and this leads to a decrease in the amplitude of the oscillatory changes in
bubble volume. For very small amplitude oscillations, analytic theory and numerical
simulations both show that the coupling is limited to the radial mode and a single shape mode,
which interact as a non-linear oscillator. In this regime, provided the departures of shape and
volume from equilibrium or steady-state conditions are small enough, the analytic theory
provides a basis for predicting the e�ect of shape deformation on the acoustic output of an
oscillating bubble.
For larger amplitude oscillations, the small amplitude theory still provides some qualitative

guidance (for example, it provides a reasonable estimate of the critical frequency detuning for
instability of a purely radial oscillation via 2:1 resonant coupling), but it is generally unable to
provide quantitatively correct results, and also fails to capture some of the most important
qualitative features. Foremost among these is the role of energy transfer to higher-order modes
in decreasing the magnitude of volumetric oscillations, and especially the geometric
ampli®cation e�ect that is evident in the present simulations (Part II) of the bubble response to
an initial impulsive decrease in the pressure within the surrounding ¯uid.
An obvious question is how the acoustics engineer is supposed to estimate the sound due to

bubbles. In current practice, this is generally done by using a measured or predicted pressure
history as input to the Rayleigh±Plesset theory. The message from our present study, as limited
in scope as it may be, is that deviations of the bubble shape from spherical can lead to a major
reduction of the strength of the bubble as an acoustic source relative to Rayleigh±Plesset
predictions. Unfortunately, however, the analytic small amplitude theory, which reduces the
problem to interactions with a single Pn shape mode, is too simple, and does not provide a
viable alternative basis for acoustics predictions except for exceedingly small amplitude e�ects.
On the other hand, the complexity of simulating the full dynamics of a bubble of complicated
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shape is overwhelming as a tool for e�ective prediction of bubble acoustics. What is needed is
a global modal decomposition, of the type currently being developed for the reduction of
turbulent ¯ow dynamics (`proper orthogonal decomposition'), to allow an approximate
description of the full dynamics via a relatively low order dynamical system. Unfortunately,
such a decomposition, even if possible, requires a great deal of `data' on the dynamics of
bubbles of complex shape, which does not presently exist.
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